当前位置: 首页 > 资料资讯 > 技术文摘 > 造成液压设备噪声和振动分析探讨

浏览历史

造成液压设备噪声和振动分析探讨


《液压维修》 / 2012-04-18


    振动和噪声有什么危害?造成噪声和振动的原因有哪些?如何排除?


    振动和噪声是液压设备常见的故障,一般会同时出现。振动和噪声会产生以下危害。
    ①影响液压系统的工作性能P551400,降低液压元件的使用寿命。
    ②影响设备的工作质量,降低设备的工作效率,严重时还会引起工具、模具和设备的损坏。
    ③振动加剧磨损,造成管路接头松脱,产生漏油,甚至振坏设备,造成设备人身事故。
    ④噪声是环境污染的一个重要部分之一,恶化劳动条件,引起工人疲劳,使大脑疲劳,影响听力,加快心脏跳动,危害人身健康。
    ⑤噪声淹没危险信号和指挥信号,容易造成工伤事故。


    引起噪声和振动的原因有以下几个方面。
    ①液压泵的噪声液压系统中一般认为主要的噪声源是液压泵。液压泵流量脉动是泵的固有特性。由于流量脉动,势必引起泵出口及管路的压力脉动,这种固有的流量脉动与压力脉动必然要产生流体噪声。另外,液压泵困油区的压力冲击及柱塞泵的倒灌流量都会产生噪声。例如,斜盘型轴向柱塞泵(零开口对称配流盘)的缸体旋转过程中,位于上死点柱塞腔内的液体压力在与排油腔接通的瞬时,从原来的吸油压力突然上升到排油压力,产生很大的压力冲击。同理,位于下死点柱塞腔内的液体压力在与吸油腔接通的瞬间突然地由排油压力降到吸油压力,同样产生冲击。
    与产生压力冲击的同时P551318,在上死点,排油腔内的液体向柱塞腔内倒灌,即产生所谓的倒灌流量,因而使得液压泵原来的固有流量脉动更加剧烈。试验证明,在目前生产的液压泵中,由于配流盘困油区设计得不合理而造成的压力冲击是很大的,它是液压泵的主要噪声源。
   液压泵的困油现象也是产生噪声和振动的重要原因,在液压泵设计制造中应充分考虑这一因素,并应采取相应对策。例如齿轮泵在使用中因困油产生极大噪声时,应拆卸认真检查卸荷槽尺寸位置是否有问题。在修磨泵盖时应使原卸荷槽尺寸不变。由于泄漏增加了泵的流量和压力脉动,便也增加了噪声。因此,消除泄漏也是减小噪声和振动的一个有效途径。
    液压泵的噪声随液压功率的增加而增加。而液压功率是由泵的输出压力p、每转排量q以及转速n三个工作参数所决定的。所以液压泵的噪声实际上是随三个工作参数增加而增加。p、q、n三个参数对泵噪声的影响程度是不同的,液压泵转速n的提高使泵的噪声增加比输出压力提高的作用要大得多;液压泵每转排量q对噪声的影响大致和压力有着相当的效果。图2-47给出了液压泵的噪声级和p、q、n三个参数的关系。因为液压泵的输出功率是由p、q、n三个参数决定的,为了获得最低的噪声级,一般应使用最低的实用转速(如1000~1200r/min),并且要选择最有利的流量和压力组合以提供所要的功率。因此在实际使用中,可利用复合泵(并联或串联液压泵)和卸荷回路来降低噪声。


    ②液压泵的吸空现象液压泵的吸空现象主要是指液压泵吸进的油液中混有空气。油液中混有过量的空气,将必然导致汽蚀、噪声的发生,而且还会出现泵的容积效率降低,使油液变质等不良后果。因此,液压系统中不允许有过量的空气存在。
    液压泵吸进空气主要有以下一些原因:油箱和油管设计、安装不合理,如油箱内油液液面太低,从回油管路冲出的油液使油箱内液面剧烈地搅动,空气便混入油内,吸油管即吸进带有气泡的油液;吸油管道接头密封不严也能吸入空气。油液中气泡在低压处膨胀,进入高压区后被压缩,产生气穴现象,因而使噪声增大29506380。图2-48所示为油液中空气的含量对噪声的影响状况。不难看出空气的含量低,则噪声小;随着空气含量增加,噪声便增大。
    产生吸空现象的其他原因还有:因泄漏等原因造成油箱中油液不足,吸油管浸入油液液面深度不够,液压泵吸油位置太高,油液黏度太大,泵吸油口通流截面过小,滤油器表面被污物堵塞,管道泄漏以及回油管没有浸入油面下等均造成大量空气进入系统。


    防止液压泵吸进空气主要有以下一些措施。
    a.液压泵吸油管要严格密封,防止空气进入。泵本身有关部分(如泵出轴端)也要密封严密,防止泵内瞬时低压而吸入空气。
    b.油箱设计要合理,可采用图2-49所示的设有隔板的长油箱。这种油箱能使油液中气泡有足够时间上浮且不会很快进入吸油管附近。油箱是液压系统中去除油液中气泡的最好地方。一般油液回到油箱是往往带有气泡,只要时间足够长,这些气泡会自动分离出来,上浮消失。为此,油箱容积应足够大。油箱的容量随液压设备的不同、使用场所的不同而有差异。通常可设计成等于系统2~3min最大流量即可。
    c.当不能提供具有隔板的油箱时,可采用图2-50所示的油箱。这是具有倾斜网去除气泡装置的油箱。这种油箱分离气泡效果很好。试验证明,采用60目的金属网,按照30。倾斜角安装效果极佳,它能去除90%混入油中的气泡。去600~100目金属网
    d.油箱中的油液应加到油标线范围回油 内,吸油管一定要浸入油池中2/3深度处。若油液黏度过高应更换较低黏度的油液。吸油滤油器要定期清洗,防止 污物堵塞。
    e.液压系统的回油管要插入油箱液面以下,并要设计成45°斜切口,面朝箱壁,距箱壁lOOmm左右为宜。回油管直径应足够大,防止回油流速过高冲入油箱,搅动液面而混入空气。
    f.采用消泡性能好的液压油,或在油中加入消泡添加剂,可使气泡能很快上浮而消失。


    ③液压泵吸油管路的气穴现象一般石油基液压油在大气压力和室温下,通常能吸收大约9%(按体积计)的空气。溶解的空气并不改变流体的黏性。溶解于流体中的空气量与流体表面接触的空气压力有关,例如,当气压真空度低到17kPa时,仅能保持7.5%的空气溶解量,结果产生过饱和现象,将会分离出空气。分解的速度与压力、温度、流体的扰动以及化学成分等因素有关。
    液压泵工作时,如果吸油管路(包括滤油器、导管和泵内通道)阻力很大,油液来不及填充泵腔,造成局部真空,形成低压。当压力低到油的“空气分离压”时,工作油液内溶解的空气就大量分解出来P560971,游离成气泡。如果形成的压力极低,达到油的饱和蒸气压时,则油的蒸气和空气一起大量析出,形成油的沸腾现象。随着泵的运转,这种混在油中的气泡一起被带进高压区。在高压区,由于高压作用,气泡被击破,然后迅速缩小、溶解和消失。在气泡被击破的瞬时,局部范围产生幅值很大的高频冲击压力,有时可高达150~200MPa,还伴随有局部高温。这种高频液压冲击作用,产生金属剥落,麻点等所谓“汽蚀”现象;噪声的增大。一方面要对工作构件的金属表面引起破坏作用,另一方面使泵产生很大的压力波动,激发其高频可采用下列措施以降低管路等附件引起的压力损失,从而排除气穴现象。
    a、增大吸油管直径、减小或避免吸油管道的弯曲,降低吸油速度,减小沿程和局部压
力损失。
    b、选用合适的吸油滤油器,并要经常检查、定期清洗,避免堵塞。
    c、尽量使液压泵吸油口低于油箱液面,或把泵安装在低于油箱的位置(实行倒灌),从而改善吸入条件。自吸性差的大流量泵,应加低压辅助泵供油。
    d、避免由于油的黏度高而产生吸油不足现象。一方面应根据地区、季节气温变化合理选用液压油的牌号;另一方面在低温下开车运行时,应进行空车预运转,使系统温度适宜时再加载运转。
    e、采用正确的配管方式。例如,使用双联泵时,采用图2-51 (b)方案优于图2-51 (a)方案。由于只有一个吸油口,如果采用图2-51 (a)形式,小容量泵吸油管阻力大于大容量泵,就会造成油液易于流向大容量泵,而小容量易产生气穴现象。两泵容量差别越大,这种现象越容易出现。


  ④控制阀引起的噪声  控制阀是液压系统中另一个噪声源。最常见的是气穴作用而产生的嘘嘘声,即高速喷流声。这是由于油液通过阀口时产生节流作用,因而压力能转换成动能,在节流口处产生很高的流速,有时可达100~150m/s(通常称为喷流现象),并在节流口以下通道截面处流速极不均匀的情况下,压力降到低于大气压,溶解于油液中的空气便分离出来,产生大量气泡。这些气
    泡在下游阀体和管中,由于油流压力回升消失,这时将产生200Hz以上的噪声。另外,在喷流状态下,油流速度不均匀会发生涡流,或由于液流被剪切均将发生噪声。
    这类噪声的有效解决办法是:提高节流口下游背压,使其高于空气分离压的临界值,一般可用二级或三级减压的办法,以防止气穴现象的发生。通常油液通过控制阀的节流口,要求上游压力与下游压力之比不大于3~6(锐边阀口取小值,圆弧阀口取大值),如果上游压力与下游压力之比大于3~6则会产生气穴P181002,导致噪声的增大。
    自激振动噪声也是经常发生的。比如溢流阀、顺序阀、减压阀等一类压力控制阀,其阀芯是支承在弹簧上的,当弹簧(包括油液的弹性)与质量、阻尼系统与管路以至于负载相匹配的有关参数超过临界值时,阀芯就会因其他部分的扰动(如压力脉动或其他振源)而产生持续的自激振动和异常噪声。某些滑阀、转阀和伺服阀等由液动力引起的自激振动,也易并发出一种呈嗡嗡叫的高频声响。一般来说,压力、温度越高这种现象就越容易发生。
    在一定的情况下,由于液压泵压力脉动的激励作用,使阀产生共振,因此增大噪声。这种现象的发生,通常是在通过阀的流量很小(阀开口很小)的情况下,有时将会引起阀芯拍击阀座,产生很响的蜂鸣声。这个问题的解决办法是,应用一个小规格的控制阀来替换,使得在流量很低的情况下,阀的节流窗口仍开得较大。
    在一些液压系统中,由于方向控制阀突然关闭或突然打开造成液压冲击而引起振动和噪声。如电磁换向阀快速切换时使油路突然关闭或使油流突然改向,以及电磁阀突然打开而使液压泵卸荷,都会产生液压冲击。一般电磁阀的动作时间为o.08~o.12s。由于快速切换,由高压转换低压,由于能量释放,引起管内压力剧烈波动,并以声速沿着管道方向传播,当传到液压缸、泵或其他大的容腔时,就要引起这些环节产生撞击、振动和噪声。例如磨床工作台在换向过程中,如果换向阀事先调整得不好,就会产生冲击而使管道发出嗡嗡的噪声;又如液压机的大型液压缸处在承压状态时,若控制阀突然打开而液压缸急速卸荷,则液压缸以及与其连接的机构也会由于冲击和变形而发出噪声。这种噪声可以通过采用分级卸荷的办法,使液压冲击尽可能减小来避免。
    在机床液压系统中,由于控制阀的工作部分产生某些缺陷或磨损而发出的一种“哨声”或尖叫声时,应更换阀座、阀芯或弹簧来消除。


    ⑤液压系统的机械噪声机械回转部分由于结构设计、制造、安装误差等原因造成偏心,当其工作时便要产生周期性的不平衡力,因而发生振动并辐射出恒定的噪声。在液压泵的驱动环节中,键、带轮、带、联轴器和齿轮等都会存在不平衡问题。因此在制造和安装过程中,应尽量减小其偏心,以保证旋转平衡。连接液压泵与驱动环节的联轴器,如果是刚。陛的,就不能吸收误差而造成振动,应该使用弹性联轴器,其同轴度应保持在0.04mm以下。若误差太大,弹性联轴器不仅不能吸收振动,反而造成强迫振动,产生噪声。泵、电机支架和机座应校准水平,紧固螺钉应有防松装置。
    管路安装不良,机座地基处理不合理P131404,在压力油换向、调压和调速时,管路会发生异常振动,并产生噪声。一般来说,管路安装应尽可能短,并用坚固的能吸收振动的支撑加以固定,避免发生驻波或共振现象。


    除针对上述振动、噪声产生的原因除采用相应的措施外,还可采取下列措施以衰减阻尼和隔离液压系统的噪声。
    ①采用脉动衰减器液压系统的主要噪声源是液压泵。为了降低其噪声,虽然可在泵的结构设计上下功夫,来消除机械冲击和压力冲击,但由于几何空间变化的不均匀性所造成的压力脉动是较难消除的。然而,采用脉动衰减器虽然不能从根本上消除这种压力脉动,却可以防止它扩散到整个系统中。
    衰减器的主要形式有能量吸收型和反射消除型两类。噪声的衰减过程不会是全部吸收,也不会是全部反射。但在许多情况下,一定的频率范围内可以看到一个特定的过程,或者主要是吸收,或者主要是反射。能量吸收型衰减器是利用某些材料的特性,通过黏阻摩擦,将声能转变成热能。所以它只能衰减传进缓冲材料内部的噪声。为了扩大缓冲材料同液体的接触面积,应把缓冲材料做成多孔的以同心管形式布置在主油流的通路上。
    ②设置蓄能器管路中设置蓄能器,也可以衰减系统中的压力脉动。蓄能器是一个反 射型脉动衰减装置,它主要利用气体弹性来吸收和释放液体压力能,依靠入射波和分流波之间的相位差关系来减小声波向下游传播。
    ③安装减振软管安装减振软管,可平滑液压泵压力脉动。因为挠性软管容易膨胀, 所以能起到一定的平滑液压泵流量和压力脉动的作用。
    ④管路上安装消声器  消声器是一种扩张式脉动衰减器,是利用液体本身的压缩性衰减油液的脉动,也属于反射型装置。消声器的基本工作原理是通过入射波与反射波的相互作用,将波形峰值部分的容量填人到波谷部分,这样可以减小流量变化,即消除压力脉动。这种消声器使用最简单的例子,就是在液压泵出油口串接一个较大的容腔(膨胀室),衰减流体噪声,如图2-52所示。图2-53所示为不同结构的膨胀室消声器。结构的变化无非是为了增强其中压力波的相互干扰作用,以提高阻尼减振的效果。
    液压泵出口处压力脉动的幅值,随着泵的输出压力、流量和转速的不同而不同,一般叶片泵和柱塞泵的峰一峰值分别为0.2~1.OMPa和0.2~1.5MPa。试验表明,液压泵出口压力脉动原为1. 31MPa,设置了消声器[如图2-53 (f)]以后,压力脉动衰减到0. 14MPa,效果比较显著。
    ⑤采用高阻尼材料吸振  为了减少噪声的传播,避免一些零件共振,可以在液压系统管道、罩壳、板状零件等表面贴上或涂上一层阻尼材料,使得这些零件的共振因阻尼作用而得到衰减,从而减少空气噪声的辐射。这种方法对于抑制高频噪声很有效。阻尼材料一般都是内损耗大的材料,如沥青、聚硫酯橡胶或聚氨酯橡胶以及其他高分子涂料。采用高阻尼材料如锰铜合金、镍钛合金以及含高碳片的孕育铸铁等作泵体或阀体的,减轻振动和降低噪声效果比较明显。
    ⑥隔离、屏蔽液压装置的噪声还可采用隔离、屏蔽的办法。声波遇到障碍物时,一部分被反射,一部则向障碍物内部传播。向障碍物内部传播的声能,除一部分透射出去外,其余皆因摩擦而转化为热。坚硬而光滑的材料(如玻璃)吸声能力很差,而柔软多孔的材料(如毛毡)吸声能力就强。吸声能力强的材料还有纤维板、石棉、玻璃纤维、泡沫塑料等。对于噪声大的元件可用隔罩罩起来23045556。高压泵一类非常强的噪声源,目前较多采用的措施是把动力装置单独地放在一个房间内封闭起来,只让进出油口管道通工作机构,一些参数的调节在远离工作地点的操纵台上通过遥控进行,这样强烈的噪声就被隔离在房间内,减少噪声对操作人员的辐射。图2-54所示为噪声源的一种屏蔽
方法。

用户评论(共0条评论)

  • 暂时还没有任何用户评论
总计 0 个记录,共 1 页。 第一页 上一页 下一页 最末页
用户名: 匿名用户
E-mail:
评价等级:
评论内容:
验证码: captcha
格雷创非品牌制造商、办事处、分公司及代理商等,本网站特定品牌名称及商标归其权属人所有,若冒犯了您的权益或有异议,联系我们投诉或建议,公安备案号44030602001369。